Irisin Ameliorates Hypoxia/Reoxygenation-Induced Injury through Modulation of Histone Deacetylase 4
نویسندگان
چکیده
Irisin is a recently identified myokine which brings increases in energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissues. However, its effects in the heart remains unknown. This study sought to determine the effects of irisin on hypoxia/reoxygenation injury and its relationship with HDAC4. Wild type and stable HDAC4-overexpression cells were generated from H9c2 cardiomyoblasts. HDAC4 overexpression cells and wild type H9c2 cells were exposed to 24 hours of hypoxia followed by one hour of reoxygenation in vitro in the presence or absence of irisin (5 ng/ml). Cell cytotoxicity, apoptosis, mitochondrial respiration, and mitochondrial permeability transition pore (mPTP) were determined. Western blotting was employed to determine active-caspase 3, annexin V, and HDAC4 expression. As compared to wild type H9c2 group, HDAC4 overexpression remarkably led to a great increase in cell death as evident by the increased lactate dehydrogenase (LDH) leakage, ratio of caspase-3-positive cells as well as the upregulated levels of active-caspase 3 and annexin V shown by western blot analysis. In addition, HDAC4 overexpression also induced much severe mitochondrial dysfunction, as indicated by apoptotic mitochondria and increased mPTP. However, irisin treatment significantly attenuated all of these effects. Though irisin treatment did not influence the expression of HDAC4 at the transcriptional level, western blot analysis showed that HDAC4 protein levels decreased in a time-dependent way after administration of irisin, which is associated with the degradation of HDAC4 mediated by small ubiquitin-like modification (SUMO). Our results are the first to demonstrate that the protective effects of irisin in cardiomyoblasts exposed to hypoxia/reoxygenation might be associated with HDAC4 degradation.
منابع مشابه
N-n-Butyl Haloperidol Iodide Ameliorates Cardiomyocytes Hypoxia/Reoxygenation Injury by Extracellular Calcium-Dependent and -Independent Mechanisms
N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ...
متن کاملHypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line
Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions in vitro. MTT assay was used to measure the cell proliferation...
متن کاملSalidroside attenuates hypoxia/reoxygenation-induced human brain vascular smooth muscle cell injury by activating the SIRT1/FOXO3α pathway
It has been reported that salidroside (SAL), a natural dietary isothiocyanate, exhibits neuroprotective roles in cerebral ischemia-reperfusion injury. However, to the best of our knowledge, its underlying protective mechanism remains unknown. Sirtuin 1 (SIRT1) is a class III histone deacetylase involved in a variety of cellular functions. SIRT1 has been identified as a mediator of cerebral isch...
متن کاملExogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway.
Nicotinamide adenine dinucleotide (NAD(+) ) not only transfers electrons in mitochondrial respiration, but also acts as an indispensable cosubstrate for Sirt1, the class III histone/nonhistone deacetylase. However, NAD(+) is depleted in myocardial ischemia/reperfusion (IR) injury. The objective of this study was to investigate the role of exogenous NAD(+) supplementation in hypoxia/reoxygenatio...
متن کاملInhibition of histone deacetylase 1 ameliorates renal tubulointerstitial fibrosis via modulation of inflammation and extracellular matrix gene transcription in mice
Renal tubulointerstitial fibrosis is characterized by sustained inflammation and excessive extracellular matrix (ECM) accumulation, leading to chronic kidney disease. Valproic acid (VPA) has anticancer activity through regulation of cell differentiation and apoptosis via inhibition of histone deacetylase (HDAC) activity and is considered a class I HDAC inhibitor. In this study, the effect of VP...
متن کامل